

Characterizing Large-Scale Computational Physics

Timothy J. Williams

Argonne Leadership Computing Facility
Argonne National Laboratory

APS March Meeting March 22, 2011

Biases

- Intentional
 - Large-scale
- Inevitable
 - Department of Energy
 - NERSC
 - Advanced Computing Laboratory (LANL)
 - Argonne Leadership Computing Facility
 - Plasma physics
 - USA

Questions

Is it physics?

Lattice QCD

Molecular dynamics

Protein folding

Plasma simulation

Electronic Structure

Physical Review

J. Chem. Phys.

- Is it large-scale?
 - 20% of leadership-class machine
 - Distributed-memory parallelism
 - Too large/slow for O(100) processor cluster

Sources

Journals

- Physical Review
- Journal of Computational Physics
- IEEE Computer

Proceedings

- SC, IPDPS
- Extreme Scale workshops

Computer center annual reports

NERSC, ALCF, OLCF, PSC, TACC

Reviews/reports

- SciDAC Review
- Computation as a Tool for Discovery in Physics (NSF report, 2002)

Books

- Petascale Computing: Algorithms and Applications (Bader, 2008)
- Various "Computational Physics" texts

Physics Areas

Condensed Matter	High Energy	Astrophysics/ Relativity
Plasma	Atomic/Molecular	Nuclear
Climate/weather	Turbulence	Geophysics

Application Types

Wide Range of Scales of Interest

Turbulence

Wide Range of Scales

Turbulent Fluid Flow.

- Range of length scales in 3D turbulence ~ R_e^{9/4}
- State-of-the-art DNS (direct numerical simulation): R_e = O(10⁴)
 - Range of length scales = O(10⁹)
- Need for more
 - Physical R_e for commercial jet aircraft = $O(10^7 10^8)$
 - Physical R_e for atmospheric flow = $O(10^7 10^8)$

Wide Range of Scales

Cosmology

Cosmology: Simulate evolution of large-scale structure of the universe

- State-of-the-art simulation: resolve galaxy-halo-sized structures
- Range of length scales is > 10⁵
 - Simulation domain 1 Gpc on a side
 - Force resolution O(10) kpc
- Range of mass scales is 10⁴-10⁵
 - 1 ptcl is 1-10 billion M_{sun}
 - Milky Way dark matter halo is 60 billion 3 trillion solar masses
 - 10 billion ptcles

Need for more

Resolve galaxies ("baryonic" matter)...stars

Plasma Physics

Wide Range of Scales

Fusion energy applications.

Plasma Physics

Wide Range of Scales

Electrostatic ion microturbulence in a tokamak

Need for more

- Electron kinetics, full-f
- Magnetic fluctuations

Wide Range of Scales

Geophysics

Seismic Wave Propagation.

State-of-the-art simulation

- M8: magnitude-8 on San Andreas Fault
 - 800 x 400 km area in Southern California (85 km deep)
 - Frequencies 0-2 Hz
 - 6 minutes simulated time
 - Grid resolution 40 m ==> 436 billion grid cells
 - CFL ==> 160,000 timesteps

Need for more

Sub-skyscraper building relevance: 3-10 Hz

Brute Force Computational Approach

Turbulence

Brute Force Approach

Turbulent Fluid Flow.

- Direct Numerical Simulation: Discrete solution of Navier-Stokes equations
 - Finite volume
 - Spectral
 - Pseudospectral
 - Spectral element

- Less brutish, but less general
 - Reynolds-averaged Navier-Stokes (RANS)
 - Large-eddy simulation (LES)

Brute Force Approach

Cosmology

Simulate evolution of large-scale structure of the universe.

- Dark matter: Particle-mesh
 - Poisson solve for long-range interactions
 - Short-range interactions
 - MC^3 code: local particle-particle interaction
 - Enzo code: AMR

Brute Force Approach

Plasma Physics

Fusion energy applications: tokamak ion microturbulence

- Ions: Vlasov equation for phase-space distribution f(x,p)
 - Reduce to gyrokinetic form representing sufficient
 - GTC code: particle-in-cell (PIC) ions
 - GYRO code: discretize (x,p) phase space
- Electromagnetic fields: Maxwell's equations
 - Reduce to Poisson equation in electrostatic limit

Brute Force Approach

Geophysics

Seismic Wave Propagation.

- Discrete solution of equations for anelastic solids
 - Finite difference (FD)
 - Finite volume
 - Spectral element
 - Finite element
- AWP-ODC code: staggered FD scheme
 - 4th order in space, 2nd order in time
 - Split-node algorithm for dynamic fault rupture modeling
 - M8 problem: uniform mesh

Persistent Players

Live Long

Persistent Players

END

Slides: http://www.alcf.anl.gov/~zippy/publications/presentations/APSMarch2011.pdf

